If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+5x-74=0
a = 16; b = 5; c = -74;
Δ = b2-4ac
Δ = 52-4·16·(-74)
Δ = 4761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4761}=69$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-69}{2*16}=\frac{-74}{32} =-2+5/16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+69}{2*16}=\frac{64}{32} =2 $
| -4d−16−20=12+2d | | x+.4x=330 | | 3t+5+2t-4t=3+6 | | 2+5x+x=20 | | 6+4x+7x=3x(6x-12)-4(x-6) | | 2d+3(d=8 | | 7+3x-−12x=3x+1 | | 0.95x+0.05(2-x)=0.10(-17) | | 4x+5x-8=28 | | 6z+19=-8-11z+2z | | -7f+10f+4=8f+9 | | 88-3y=20 | | 2x/5-x=x/10-35/5 | | X=2L+2y | | 9x+18/11=-18 | | 24a-22=-4(1-6a)1/1 | | x2=49/841 | | (5x)+(x)=180 | | -5x-2=5x-18 | | 10-4a=2(-a+8) | | 4x^2-25x+30.94=0 | | 4n+28=6n | | 15u=8u+21 | | x2=49/729 | | 2.93+19=x | | 3b-9-8b=11-32 | | 3(2x=1)=4=10 | | 9d=81d= | | -3/5f=-15 | | x2=784 | | 10=(3.14/4)/x | | -8.8(x-3.75)=26.4 |